Aerospace Instrumentation

Code	Credit Hours	
AE-341	2-1	

COURSE DESCRIPTION:

This course will give understanding of various elements of instrumentation system and their performance characteristics. It will enable the students to select appropriate elements/ hardware for desired areas of measurement applications. Topics like measurement process, standards and dimensional units of measurement, sensors/ transducers, data acquisition system, static & dynamic performance characteristics, importance of time dependent characteristics of the measurands are included to enhance the capability of engineering students. A brief overview of concepts pertaining to significant numbers, measurement errors and uncertainty has been introduced to evaluate the goodness of experimental/ measurement data.

Lab portion includes development of measurement systems through selecting appropriate hardware like sensors, signal conditioners and utilizing Arduino/ PC based data acquisition systems. Apart from practical lab work, a number of Virtual Instrumentation exercises in LabView software have been incorporated in the Lab portion. Lab work also includes demonstration of automated dimensional measurement quality control equipment like Coordinate Measuring Machine (CMM) etc.

TEXT AND MATERIAL

Text Book:	1. Measurement & Instrumentation Principles by Alan S. Morris,		
	Latest Available Edition		
	2. Electrical Fundamentals by Aviation Maintenance Technician		
	Certification Series, Latest Available Edition		
	3. Measurement and Instrumentation: Theory and Application		
	(Latest Available Edition), by Alan S. Morris and Reza Langari		
Reference	1. Fundamentals of Instrumentation & Measurement by Dominique		
Book:	Placko Mechanical Measurements by Thomas G. Beckwith, Roy		
	D. Marangoni, Lienhard V, John H., 6th Edition		

PREREQUISITE:

NIL

ASSESSMENT SYSTEM FOR THEORY

Quizzes	10%
Assignments	10%
Mid Terms	30%
ESE	50%

ASSESSMENT SYSTEM FOR LAB:

Quizzes	10%-15%
Assignments	5% - 10%
Lab Work and Report	70-80%
Lab ESE/Viva	20-30%

Teaching Plan

Week No	Topics	Learning Outcomes	Delivery Method
1	Introduction to Measurement & Instrumentation	Course Outline, objectives, teaching plan, assessment method	Lecture
2	Principles of Measurement	 Measurement Units Measurement System Applications Elements of a Measurement System Choosing Appropriate Measuring Instruments Potentiometers Wheatstone Bridge Examples 	Lecture and discussion
3	Instrument Type & Performance Characteristics	 Categorization of Sensors Active & Passive Instruments Static Characteristics of Instruments Precision Accuracy & Inaccuracy Repeatability & Reproducibility Range or Span Examples 	Lecture and discussion

4		Sensitivity of Measurement	
4	Static Characteristics of Instruments	 Linearity Threshold Resolution Zero Drift or Bias Examples Solve related problems 	Lecture and discussion
5	Static Characteristics of Instruments Cont Operational Modes of Instruments	 Sensitivity to Disturbance Sensitivity Drift Hysteresis Dead Space Examples Solve Related Problems Null Instrument Deflection Instruments Analog & Digital Instruments 	Lecture and discussion
6	Dynamic Characteristics of Instruments	 Zero Order Instruments First Order Instruments Capacitive Circuits Inductive Circuits Examples Solve Related Problems 	Lecture and discussion
7	Sensor Technologies	 Strain Gauges Strain Gauge Quarter Bridge Circuits Strain Gauge Half Bridge Circuits Strain Gauge Full Bridge Circuits 	Lecture and discussion
8	Sensor Technologies Cont	 Examples on Strain Gauges Problems on Strain Gauges Encoders Incremental Encoders Absolute Encoders 	Lecture and discussion
9		MID TERM EXAM	
10	Temperature Measurement	 Principles of Temperature Measurement The International Practical Temperature Scale Thermocouples Working Principle of Thermocouples Types of Thermocouples Examples on Thermocouples 	Lecture and discussion
11	Temperature Measurement Cont	Problems on ThermocouplesVarying Resistance DevicesResistance Temperature Devices	Lecture and discussion

		Thermistors	
		Examples	
12	Introduction to LabVIEW	 Virtual Instruments Parts of a VI Starting a VI Front Panel Block Diagram Searching for Controls, Vis and Functions Selecting a Tool Data Flow Building a VI 	Lecture and Hands-On practice on LabVIEW
13-14	Developing a VI in LabVIEW	 Numeric Functions Comparison Functions Boolean Functions Practice Exercises on Designing a Front Panel and Wiring Practices On the Block Diagram of a VI Practice Exercises on Developing VIs and Implementing Code in LabVIEW 	Lecture and Hands-On practice on LabVIEW
15	Loops, Shift Registers & Case Structures in LabVIEW	 For Loops In LabVIEW While Loops in LabVIEW Shift Registers in LabVIEW Case Structures in LabVIEW Examples and Exercises of all 	Lecture and Hands-On practice on LabVIEW
16	Timing in LabVIEW, Local Variables in LabVIEW, Sequential Programming in LabVIEW & Introduction to Data Acquisition	 Timing Functions and Timing VIs in LabVIEW Local Variables in LabVIEW Sequential Programming Introduction to Data Acquisition 	Lecture and Hands-On practice on LabVIEW
17	Pressure	 Basics of Pressure Measurement Manometers Barometers Bourdon Tubes Diaphragms LVDT Capacitive Pressure Sensors Fiber-Optic Pressure Sensors Examples & Problems 	Lecture and discussion
17	Project Viva	Viva on Instrumented Hardware of Projects	Individual Viva
18	End semester exam (ESE)		

Instrumentation Lab LIST OF EXPERIMENTS

Sr. No.	List of Experiment	Equipment Used
1	Basic Control Systems Equipment and Terms Used	DIGIAC 1750 Trainer
2	Positional Resistance Transducers	DIGIAC 1750 Trainer
3	Wheatstone Bridge Measurements	DIGIAC 1750 Trainer
4	Temperature Measurement	DIGIAC 1750 Trainer
5	Light Measurement	DIGIAC 1750 Trainer
6	Linear Position or Force Applications	DIGIAC 1750 Trainer
7	Sound Measurement	DIGIAC 1750 Trainer
8	Sound Output	DIGIAC 1750 Trainer
9	Display Devices	DIGIAC 1750 Trainer
10	Dynamometer and DC Motor	DIGIAC 1750 Trainer
11	Getting started with Arduino and Arduino IDE	Arduino Kit
12	Arduino and LCD interfacing	Arduino Kit
13	Arduino and Ultrasonic Sensor Interfacing	Arduino Kit
14	Arduino and IR Sensor Interfacing	Arduino Kit